FIFTY COMMON PLANT GALLS
OF THE CHICAGO AREA

BY
CARL F. GRONEMANN

BOTANY
LEAFLET 16

FIELD MUSEUM OF NATURAL HISTORY
CHICAGO
1930
The Botanical Leaflets of Field Museum are designed to give brief, non-technical accounts of various features of plant life, especially with reference to the botanical exhibits in Field Museum, and of the local flora of the Chicago region.

LIST OF BOTANICAL LEAFLETS ISSUED TO DATE

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figs</td>
<td>$.10</td>
</tr>
<tr>
<td>2</td>
<td>The Coco Palm</td>
<td>.10</td>
</tr>
<tr>
<td>3</td>
<td>Wheat</td>
<td>.10</td>
</tr>
<tr>
<td>4</td>
<td>Cacao</td>
<td>.10</td>
</tr>
<tr>
<td>5</td>
<td>A Fossil Flower</td>
<td>.10</td>
</tr>
<tr>
<td>6</td>
<td>The Cannon-ball Tree</td>
<td>.10</td>
</tr>
<tr>
<td>7</td>
<td>Spring Wild Flowers</td>
<td>.25</td>
</tr>
<tr>
<td>8</td>
<td>Spring and Early Summer Wild Flowers</td>
<td>.25</td>
</tr>
<tr>
<td>9</td>
<td>Summer Wild Flowers</td>
<td>.25</td>
</tr>
<tr>
<td>10</td>
<td>Autumn Flowers and Fruits</td>
<td>.25</td>
</tr>
<tr>
<td>11</td>
<td>Common Trees (second edition)</td>
<td>.25</td>
</tr>
<tr>
<td>12</td>
<td>Poison Ivy (second edition)</td>
<td>.15</td>
</tr>
<tr>
<td>13</td>
<td>Sugar and Sugar-making</td>
<td>.25</td>
</tr>
<tr>
<td>14</td>
<td>Indian Corn</td>
<td>.25</td>
</tr>
<tr>
<td>15</td>
<td>Spices and Condiments (second edition)</td>
<td>.25</td>
</tr>
<tr>
<td>16</td>
<td>Fifty Common Plant Galls of the Chicago Area</td>
<td>.25</td>
</tr>
<tr>
<td>17</td>
<td>Common Weeds</td>
<td>.25</td>
</tr>
<tr>
<td>18</td>
<td>Common Mushrooms</td>
<td>.50</td>
</tr>
<tr>
<td>19</td>
<td>Old-Fashioned Garden Flowers</td>
<td>.25</td>
</tr>
<tr>
<td>20</td>
<td>House Plants</td>
<td>.35</td>
</tr>
<tr>
<td>21</td>
<td>Tea</td>
<td>.25</td>
</tr>
<tr>
<td>22</td>
<td>Coffee</td>
<td>.25</td>
</tr>
<tr>
<td>23</td>
<td>Carnivorous Plants and “The Man-Eating Tree”</td>
<td>.25</td>
</tr>
<tr>
<td>24</td>
<td>Mistletoe and Holly</td>
<td>.25</td>
</tr>
</tbody>
</table>

CLIFFORD C. GREGG, DIRECTOR

FIELD MUSEUM OF NATURAL HISTORY
CHICAGO, U.S.A.
Fifty Common Plant Galls of the Chicago Area

The curious swellings and bizarre formations called galls, which appear on plants, scarcely ever fail to attract attention, and their presence is often the cause of much speculation. Galls have long been known to exist, and we find mention of them in the literature of such early writers as Theophrastus (371–286 B.C.). Their origin, however, was unknown until comparatively recent times. For centuries it was believed that they were supernatural growths. In the Middle Ages the notion was prevalent that they might be consulted as omens, to foretell future events. It was thus believed that a gall containing an ant augured a bountiful harvest; a maggot, a plague among cattle; a spider, pestilence. Superstition associated with galls still prevails, at least in a small measure, in some countries.

The origin of galls was a matter of little concern to early investigators. Apparently their interest was more in the practical value of galls, particularly as a source of remedies for human ailments.

The gall that has long held a foremost place in the practice of medicine, in tanning, dyeing, and in the making of ink, is the Aleppo gall (frontispiece), an oak gall found in Europe and Asia. An astringent decoction made from this gall was used in the treatment of ulcerated mouth, gum affections, burns, etc. Toothache was allayed by

1 Within fifty miles of the center of Chicago.
chewing the gall. While the use of the Aleppo gall for medicinal purposes has waned, it is still used extensively in tanning and dyeing and as an ingredient in the manufacture of writing fluids.

Another gall, equally important and also used in medicine, tanning, and dyeing, is the Chinese gall (frontispiece), a sumac gall found in India, China, and Japan. The Bedeguar gall, a rose gall (p. 23), has long been used medicinally and as a charm to induce sleep. The use of galls as a basis for a dye employed in tattooing is recorded by Burton (First Foot-steps in East Africa, 1856). He found Somali women using them for that purpose. Thus we find that certain galls have had a wide range of usefulness, both real and assumed.

The Italian physician Marcello Malpighi (1628–94) was the earliest writer on galls to treat the subject systematically, and it is he whom we must credit with the founding of this branch of the natural sciences, called Cecidology. Malpighi, finding that the galls under his observation were caused by insects, removed much doubt as to their origin.

Although thousands of galls have been described from the United States, it is safe to say that there are thousands left to be discovered. To find galls one need not travel far. Often near-by woods, fields, and road-sides offer abundant material. Even the limited area of a city lot may not be entirely void of the plant deformations, for occasionally they are found on weeds and cultivated plants.

Galls possess many interesting characters which tend to make them attractive study material. These features are, in the main, size, shape, texture, and a wide range of color—shades of green, yellow, brown, red, and white.

Plant galls caused by insects are due to a stimulus or irritation produced by them. The host plant responds to the action of this stimulus, which may be chemical or mechanical, by cell enlargement, new cells or both, thus giving rise to these abnormal growths.

It was believed at one time that galls, particularly those caused by gall-wasps, resulted from a poison injected into the plant tissues by the insect at the time of depositing its egg. It is now generally conceded that gall formation does not usually occur until the larva has emerged from the egg. In the case of some galls caused by saw-flies, however, the galls commence to form before the larvae hatch.

Not all galls are caused by insects. Some are due to the presence of eel-worms and still others to fungi, of which the cedar apple on the leaves of the red cedar is an outstanding example.

The galls described in this leaflet are caused by members of the following orders of insects and their allies, the mites:

- Hemiptera (Aphididae and Psyllidae). Plant lice and jumping plant lice.
- Coleoptera (Cerambycidae). Longicorn beetles.
- Lepidoptera (Gelechiidae). Moths.
- Diptera (Itonididae and Trypetidae). Midges and peacock flies.
- Acarina (Eriophyidae). Mites.

Birds, also, have an interest in galls because they are a source of a large part of their food supply. Chickadees and goldfinches search the willow cone gall for grasshopper eggs often deposited there. Upon examining a willow cone gall that had previously been searched by a chickadee, 103 grasshopper eggs were found. Woodpeckers and blue jays break open the oak bullet gall (p. 15) to get the gall insect. Squirrels search galls like the petiole galls and the vagabond poplar gall (pp. 6, 7) for the honey-dew secreted by the aphids, and also open the oak bullet gall to eat the insect.
Among insects attracted by the saccharine fluid exuding from some galls, upon which they feed, are ants, beetles, and wasps.1

Small spiders inhabit empty galls such as the succulent oak gall (p. 17), and the mason bee is known to build in the large empty oak apple (p. 10).

Galls may be preserved by being pressed and mounted like herbarium specimens, or they may be kept in a 2 per cent solution of formalin or a 50 per cent solution of alcohol. Hard, woody galls may be kept in pasteboard boxes.

For other literature on the subject the reader is referred to the list of references at the end of this leaflet.

In the descriptions of the various galls the name of the gall is in each case followed by the scientific name of the insect concerned in its production.

PINE-CONE WILLOW GALL

Rhabdophaga strobioides Walsh

MIDGE

In this gall deformed leaves overlap each other, thus forming a scaly cone located terminally on twigs of the willows.

Slightly pubescent and light gray in color.

Arrow points to larval chamber.

WILLOW LEAF GALL

Pontania desmodioides Walsh

SAW-FLY

This smooth- or rough-surfaced gall appears on both sides of the leaf and frequently at the leaf margin. Occurs singly and in numbers, involving almost the entire leaf.

Color: yellow-green, often tinged red.
WILLOW APPLE GALL
Pontania pumrum Walsh
SAW-FLY
This spherical, fleshy gall occurs on the leaves of the willows.
The major portion is on the under side of the leaf, projecting but slightly above.
Color: yellow-green, rosy-cheeked, with numerous small brown spots.

A
POPLAR PETIOLE GALL
Pemphigus populi transversus Riley
PLANT LOUSE
This oval gall, common on the cottonwood, Populus deltoides, occurs about midway on one side of the petiole with a transverse slit on the opposite side.
Color: green, often tinged red.

B
POPLAR STEM GALL
Pemphigus populicaulis Fitch
PLANT LOUSE
This gall, also common on the cottonwood, is located at junction of petiole and blade. Opening at base slightly twisted.
Color: like preceding.

VAGABOND POPLAR GALL
Pemphigus vagabundus Walsh
PLANT LOUSE
This apical gall is a deformation of the leaves and is common on the cottonwood. It is hollow, with an exit near the base as shown at A.
B represents a young gall.
Color: yellow-green, sometimes tinged red.

POPLAR TWIG GALL
Saperda concolor LeC.
LONGICORN BEETLE
This irregular, elliptical twig gall occurs on both willows and poplars. It varies in diameter from one to three centimeters.
Section of gall shown at A.
Color: same as twig.
HICKORY ONION GALL
Caryomyia holotricha O. S.
MIDGE

This very hairy gall occurs singly or closely massed on the under sides of the leaves of several kinds of hickories. Color: pale when young, turning to rust-brown.

A

HICKORY TUBE GALL
Caryomyia tubicolca O. S.
MIDGE

A small cylindrical gall occurring on the under sides of hickory leaves. Constricted near the top. Apex slightly flaring.

Color: young gall yellow-green, red near top, apex brown. Dark brown when old.

B

Cecidomyia sp.
MIDGE

This curved, tapering gall, slightly longer than the preceding, also occurs on the under sides of hickory leaves.

HICKORY APHID GALL
Phylloxera caryaeaulis Fitch
PLANT LOUSE

This hemispherical, hollow gall is among the largest found on hickories. It occurs on twigs, petioles, midribs and catkins.

Opening at the top which gradually enlarges, the gall finally becoming cup-shaped as at D.

Color: green, sometimes tinged red.

A, on twig. B, on catkin. C, on midrib. D, on petiole, old and dry.

HAZEL CATKIN GALL
Cecidomyia squamulicola Stebb.
MIDGE

This gall is a deformation of the scales of the hazel catkin which have increased in size at the base.

Color: same as catkin. Galls at A. Normal catkin at B.
LARGE SPONGY OAK APPLE

Amphibolips spongiosa O. S.
GALL-WASP

A large, thin-walled, globose gall filled with a white spongy substance in the center of which is the larval cell.

This gall occurs on the leaves of the black oak, *Quercus velutina*.

Color: green, turning to light brown.

OAK CLUB GALL

Callirhytis clavulatum O. S.
GALL-WASP

A hard, woody, club-shaped gall, which occurs on the tips of twigs of the white oak, *Quercus alba*. Leaves frequently grow from it.

Contains several larval chambers.

Color: green, often tinged red, turning brown.

LARGE EMPTY OAK APPLE

Amphibolips inanis O. S.
GALL-WASP

In general outward appearance this gall is like the preceding but is thinner walled. The larval cell is supported by radiating filaments.

Occurs on the leaves of the red oak, *Quercus borealis* var. *maxima*.

Color: green, with purplish spots.

HORNED OAK GALL

Callirhytis cornigera O. S.
GALL-WASP

This irregular spherical gall with its hornlike projections, each of which contains a larval cell, occurs on twigs of red oak, *Quercus borealis* var. *maxima*. It is hard and woody and variable in size.

Color: like twig.

A: section of enlarged larval cell.
OAK ROSETTE GALL

Andricus frondosa Bass.

GALL-WASP

This gall is a deformed leaf bud which has developed into a crowded mass of modified leaves.

Occurs on the burr oak, *Quercus macrocarpa*, and the white oak, *Q. alba*.

Color: green.

WOOL SOWER GALL

Callirhytis seminator Harr.

GALL-WASP

The wool sower is composed of a large number of small hairy galls attached to a common point on twigs of the white oak, *Quercus alba*, thus forming a compact woolly mass. A represents a single gall.

Color: white, often tinged red, turning brown.

OAK PETIOLE GALL

Andricus petiolicola Bass.

GALL-WASP

This globose, slightly spindle-shaped gall occurs at the base of the midrib of the leaves of the burr oak, *Quercus macrocarpa*, white oak, *Q. alba*, and swamp white oak, *Q. bicolor*.

Contains several larval chambers as shown at A.

Color: green, turning brown.

SMALL OAK APPLE

Andricus singularis Bass.

GALL-WASP

A small, smooth, thin-walled, globular gall occurring on the leaves of the red oak, *Quercus borealis* var. *maxima*.

It contains an oval larval cell suspended by radiating fibers. See A.

Color: green, turning brown.
CLUSTERED MIDRIB GALL
Cynips dimorphus Gill.
GALL-WASP
A small spherical gall found on the under sides of leaves of the white oak, *Quercus alba*, and the burr oak, *Q. macrocarpa*. Occurs in clusters on the midrib.
Color: green, often tinged red, turning brown.

RED-BANDED BULLET GALL
Dryocosmus imbricariae Ashmd.
GALL-WASP
This smooth, spherical gall, irregularly banded with red and green, is found on twigs of several species of the red oak group.
A shows section of gall.

LOBED OAK GALL
Cynips strobilana O. S.
GALL-WASP
These angular, slightly wedge-shaped galls occur on the burr oak, *Quercus macrocarpa*, and the swamp white oak, *Q. bicolor*. Gall has a thick, corky wall.
Color: green, turning brown.
A: section of gall showing larval cell.

OAK BULLET GALL
Disholocaspis globulus Fitch
GALL-WASP
This spherical, corky gall grows singly or in clusters on twigs of the white oak, *Quercus alba*. In the center of the gall is the small thin-walled larval cell.
Color: yellow, tinged red, turning brown.
ROUGH BULLET GALL
Disholcaspis mamma Gill.
GALL-WASP
This gall may be confused easily with the preceding. The distinguishing characters are a velvety surface and pointed apex. It usually occurs in large numbers and in variable sizes on the branches of the burr oak, *Quercus macrocarpa*.
Section of gall at A.
Color: green, turning brown.

SUCCULENT OAK GALL
Dryophanta palustris O. S.
GALL-WASP
This hollow, globular gall is found on the leaves and catkins of several species of the red oak group. In the young galls the larval cell is attached to the inner surface of the gall. Later it becomes detached and rolls about freely. See A.
Color: green, often tinged red.

WOOLLY LEAF GALL
Callirhytis lanata Gill.
GALL-WASP
This gall, which occurs as a woolly mass on the under sides of the leaves of several species of the red oak group, is composed of angular galls closely joined. When young the galls are covered with a whitish wool which later turns brown.

OAK HEDGEHOG GALL
Acraspis erinacei Beutm.
GALL-WASP
A hard, round or elongated gall the surface of which is separated into small conical facets terminating in slender spines. Occurs on the midrib of the leaves of the white oak, *Quercus alba*.
Section of gall at A shows larval cells.
Color: yellow-green with red spines.
OAK PILL GALL
Cincticornia pilulae Walsh
MIDGE
A hard, subglobular gall often occurring in large numbers on the upper surfaces of the leaves of several species of the red oak group. Surface of gall has numerous fine fissures which later break open and become ragged.
Color: reddish.

COCKSCOMB ELM GALL
Colopha ulmicerca Fitch
PLANT LOUSE
This cockscomb-like gall is found on the upper surface of the leaves of the white elm, *Ulmus americana*. It is hollow, with an opening on the under side as shown at A.
Color: green, often tinged red.

MARGINAL FOLD GALL
Itonid foliaria Rssl. & Hkr.
MIDGE
This gall is merely a folding of the leaf's edge over on the upper surface. Occurs on several species of the red oak group.
Color: like leaf, turning brown.

SLIPPERY ELM POUCH GALL
Pemphigus ulmius Walsh
PLANT LOUSE
A pouch-shaped gall occurring on the upper surface, usually near the midrib, on the leaves of the slippery elm, *Ulmus fulva*. Hollow, with opening on the under side. When mature, fissures occur at the base, thus providing additional exits for the insects.
Color: green, turning brown.
SPINY HACKBERRY GALL
Cecidomyia spiniformis Patt.
MIDGE
This small conical gall often occurs in large numbers on the under sides of the leaves of the hackberry, * Celtis occidentalis*. Hollow and thin-walled.
Color: yellow-green.

WITCH HAZEL CONE GALL
Hornaphis hamamelidis Fitch
PLANT LOUSE
This conical gall occurs on the upper surface of the witch hazel, *Hamamelis virginiana*. It is often slightly constricted at the base. The opening is on the under side.
Color: green, often tinged red.

HACKBERRY NIPPLE GALL
Pachysyila mamma Riley
JUMPING PLANT LOUSE
This subcylindrical gall occurs on the under sides of the leaves of the hackberry, *Celtis occidentalis*. Lower half slightly constricted. Rounded, pubescent apex. Represented on upper side of leaf by shallow depression. Enlarged section of gall at A shows larval chamber and exit channel.
Color: pale blue-green.

SPINY WITCH HAZEL GALL
Hornaphis spinoeus Shimer
PLANT LOUSE
This gall, covered with numerous long spines, is a deformed fruit bud of the witch hazel, *Hamamelis virginiana*. It is hollow, with an opening near the base.
Color: green.
CINQUEFOIL AXIL GALL
Gonaspis potentillae Bass.
GALL-WASP

This hairy, spherical gall occurs in the axils of the leaves of the cinquefoil, _Potentilla canadensis_, modified leaves often growing from it. Contains an oval larval cell.

Color: green, turning brown.

MOSSY ROSE GALL
ROSE BEDEGUAR
Rhodites roseae Linn.
GALL-WASP

This gall consists of several larval cells covered with filaments which give it the moss-like appearance. Imported accidentally into this country. Found on the sweetbrier rose, _Rosa rubiginosa_.

Color: green, often tinged red, turning brown.

SPINY ROSE GALL
Rhodites pustulatoides Beutm.
GALL-WASP

This small, spiny gall occurs singly or in clusters on the leaves of some wild and cultivated roses.

Color: green, tinged red, turning brown.

A similar gall, _Rhodites bicolor_, but larger and with long tapering spines, also is common. Occurs in clusters, often obliterating the leaf.

Color: same as preceding.

WILD CHERRY POUCH GALL
Eriophyes padi Nal.
MITE

This small pouch gall occurs on the upper surface of the leaves of the wild cherry, _Prunus serotina_. When mature a fissure occurs which gradually widens and lays the gall open as shown at A.

Color: green or red.
CHOKECHERRY POCKET GALL
Contarinia virginiana Felt
MIDGE
This gall is a deformed fruit of the chokecherry, *Prunus virginiana*, which has become swollen and elongated. The cherry stone is absent in the gall. Gall is shown at A.
Color: green.

WILD PLUM POUCH GALL
Eriophyes sp.
MITE
This elongated, irregularly swollen pouch gall often occurs in large numbers on the under sides of the leaves of the wild plum, *Prunus americana*.
Color: pale green, occasionally tinged red.

A BOX ELDER LEAF GALL
Contarinia negundifolia Felt
MIDGE
This gall is an elongated, succulent, rolled swelling of the leaf on both sides of the midrib.
Color: green.

B
Eriophyes negundii Hodgk.
MITE
Small warty swellings irregularly scattered over the upper surfaces of the leaves.
Color: green.

GRAPE FILBERT GALL
Schizomyia coryloides
Walsh and Riley
MIDGE
This fusiform, hairy gall occurs in clusters on grapevines. Pithy inside with a long narrow larval cell.
A: single gall.
B: section of gall showing larval cell.
Color: green, turning brown.
Grape Phylloxera Gall
Phylloxera vitifolii Fitch

Plant Louse
This wart-like gall is present in large numbers on the leaves of wild and cultivated grapes. Another generation of this insect, found on the roots, is very destructive.

A: an enlarged gall.

B: section of gall.

Color: green.

Goldenrod Ball Gall
Eurosta solidaginis Fitch

Gall-Fly
A pithy, globular stem gall with an oval larval cell in the center. Usually one on stem, occasionally two or more. Common on the goldenrod, *Solidago canadensis*.

Birds have been seen opening these galls to get the larvae.

Color: green.

Elliptical Goldenrod Gall
Gnorimoschema gallae-solidaginis Ril.

Gall-Moth
A hollow, spindle-shaped gall common on the stem of the goldenrod, *Solidago canadensis*. Sometimes two or more on stem. Adult insect emerges through exit hole A previously prepared by the larva.

Color: green, tinged red.
GOLDENROD BUNCH GALL
Rhopalomyia solidaginis Lw.
MIDGE

A terminal gall arresting the growth of the stalk and causing the leaves to bunch together into a globular mass. The larval cell is at the end of the stalk in the center of this mass.
Color: green.

APICAL SUNFLOWER GALL
Ionom sp.
MIDGE

This gall occurs terminally on the stem of the woodland sunflower, *Helianthus divaricatus*. A similar gall, caused by the midge *Asphondylia helianthiflorae* Felt, is found on *Helianthus strumosus*.
Color: green.

SUNFLOWER PURSE GALL
Asphondylia globulus O. S.
MIDGE

This globular stem gall is common on the wild sunflower, *Helianthus giganteus*. One or more on stem. The larval cells vary in number according to size of gall.
Color: green.

APICAL ROSINWEED GALL
Aglax leaveworthi Bass.
GALL-WASP

This apical, subglobular gall is a deformation of the leaves and stem and occurs on the rosinweeds, *Siphium integrifolium* and *S. perfoliatum*. Illustration represents a gall on *S. perfoliatum*. It contains numerous larval cells.
Color: green.
REFERENCES

FELT, E. P. Key to American Insect Galls. New York State Museum Bulletin No. 200, 1918. Albany, N.Y.

